SHAMOKIN CREEK WATERSHED

Acid Mine Drainage Treatment for Beneficial Reuse & Environmental Restoration

Prepared by

Jon Dietz, Ph.D. & Tim Gourley Dietz-Gourley Consulting, LLC www.DGengr.com

Jim Koharski Shamokin Creek Restoration Alliance & Jaci Harner Northumberland County Conservation District

Coal Regions of Pennsylvania

Coal Mining History of the Region

- 1790 Discovery of Anthracite Coal in Quaker Run
- ➢ 1830's − Major Mining Started
 - Invention of Steam Engine
 - Expansion of Railroads
 - Mechanical Breaker
- 1830 to 1900 Development of Major Collieries
 - Scott Colliery near Kulpmont
 - Excelsior Colliery near Excelsior
 - Corbin Colliery near Ranshaw
 - Hickory Ridge Colliery near Marion Heights
 - Peaked during WWII 100 million tons/year
- Post WWII anthracite mining declining
 - Great Depression
 - Petroleum & Natural Gas Discoveries
 - Western PA Bituminous Coal for Steel
- Slight Increase in WWII
- Post-WWII Mining was limited
 - Less deep mining
 - Greater surface mining
- > 1960 All coal mining had ceased in Watershed

1836 - 1st Major Coal Mine Cameron Colliery

Acid Mine Drainage Sources In The Watershed

Strip Mines Outflows

Boreholes to drain mines

Culm Pile Drainage

Air Shaft Outflow

Deep, Mine Outflows

Purpose of the Feasibility Study

- Focus on High Flow Discharges Previously Considered Untreatable Due to High Costs and/or Land Area.
- Evaluate New & Innovative Treatment Approaches Developed in the Last Decade.
 - lower capital costs
 - lower long term operating costs
- Consider the Beneficial Reuse of the Treated Water and Byproduct (iron oxide solids) from the treatment.
 - generate revenues to pay for the treatment
 - enhance economic conditions in local communities

Feasibility Study Area AMD Treatment & Water Reuse

Acid Mine Drainage Sources In The Study Area

Acid Mine Drainage Sources In The Watershed

Approximately 60 Discharges from Deep Mines, Surface Mines, & Culm Piles Throughout the Watershed (Cravotta & Kirby 2004)

	Location ID	Local Name	Flow MGD	Iron		%
Rank				mg/L	lbs/day	Watershed Load
1	SR19	Scott Mine Tunnel	<i>12.4</i>	30.6	2349	22.7
2	SR12	Excelsior Strip Pit Overflow	9.1	30.4	1742	20.3
3	SR53	Cameron Mine Air Shaft	3.2	58.4	1152	13.2
4	SR49	Henry Clay Stirling Mine	8.5	26.1	1030	12.9
5	SR23	Big Mtn Mine #1	2.3	29.7	330	5.9
6	SR15	Corbin Drift	1.0	44.9	415	5.7
7	SR51A	Cameron Mine Drift	1.5	49.1	464	4.6
8	SR21	Maysville Mine Borehole	2.5	23.4	307	3.9
9	SR5B	Mid. Valley Mine Tunnel	3.2	9.9	207	3.7
10	SR20	Colbert Mine Breach	1.1	30.9	292	2.2
Top 10 Total			48.4		8289	95.1%
Yellow Total			25.1		4690	53.8%

Top Ten Discharge

Treated AMD Beneficial Reuse

Industrial Reuse

- Evaporative Cooling at Power Plants
- Make-up Water in Natural Gas Well Hydro-fracturing
- Low Temperature Geothermal (Open or Closed-Loop) for heating and cooling

Recreational Reuse

- Trout Culture for Stream Stocking
- Water Supply Augmentation
 - Low Flow Augmentation for the Susquehanna River

AMD Byproduct (Solids) Handling

Disposal Options

- **Deep Mine Injection** liquid sludge injected through a borehole into the deep mine.
- Mine Pit Disposal dewatered sludge is disposed in nearby open pits and strip cuts of active surface mines.
- Lagoon Burial accumulated sludge in dry lagoons is buried with overburden and top soil.
- Land Application dewatered sludge is blended with mine waste at active deep mines or with topsoils as part of surface reclamation.
- Landfilling dewatered sludge is transported and disposed in landfills.

Reuse Options – Depend on Characteristics/Treatment Process

- Metallurgical used in steel production and the powdered metal industry.
- Corrosion Inhibitor in Concrete an additive to inhibit reinforcing bar chloride corrosion in concrete.
- Environmental various uses in pollution abatement including phosphorous removal and trace metal sorption in wastewater treatment.
- Pigments/Colors use as a pigment in various materials including masonry, concrete and paints.
- Agricultural Soil Amendment soil amendment to bind in the soil and prevent runoff of phosphorous.

High Value Beneficial Solids Reuse

Low-Grade Quality Iron Oxide Pigment @ \$ 250 per ton

Approximate Production in Feasibility Study Area = 1,600 tons (dry weight)

Treatment for Feasibility Study AMD

Passive Treatment Options

- Anoxic Limestone Drain 200,000 Tons & \$8.5 million
- Aerobic Ponds 60 acres & \$5.0 million
- Capital Costs & Size Not Feasible
- Current Active Treatment Options
 - Conventional Lime Treatment
 - High Density Sludge (HDS) Lime Treatment
- Innovative Active Treatment Options
 - Activated Iron Solids (AIS) Treatment
 - Value Extraction Process (VEP) Process

Comparison of Select Active Treatment Conventional Lime, HDS Lime, & AIS Treatment

Capital Costs

- Conventional Lime \$4.1 million
- HDS Lime \$5.2 million
- AIS Treatment- \$4.7 million

Operating Costs

- Conventional Lime \$980,000 per year
- HDS Lime \$670,000 per year
- AIS Treatment \$430,000 per year

Effluent Quality

- All produce similar effluent quality for iron
- Conventional & HDS Lime have a higher effluent pH (8.5/7.0)
- AIS Treatment has slightly lower hardness

Sludge Characteristics

- Conventional Lime produce low density high volume sludge
- Conventional & HDS Lime produce calcium contaminated sludge
- HDS Lime & AIS Treatment produce high density low volume sludge
- AIS Treatment produces high iron (>95%) and low calcium (<5%) sludge

SELECTION – AIS Treatment selected due to lower operating costs & sludge characteristic consistent with identified beneficial reuse. Estimated Operating Cost = \$0.11/1,000 gallons

Advanced Treatment Approach

Facility Size

- 1 MGD Facility
- Expandable Components (in 1 MGD increments)

Treatment Approach

- Ozonation for residual metal oxidization.
- Ultra-filtration for removal of particulate solids.

Effluent Water Quality Meets Beneficial Reuses Including

- Cooling Water and Supply for Boiler Water (using R/O)
- Low Temperature Geothermal
- Most Industrial Water Applications Hydrofracking Water Source
- Potable Water except for Sulfate

Facility Costs

- Capital Costs \$1.9 Million
- Operating Costs \$150,000 per year
- Estimated Treatment Costs \$0.35 per 1,000 gallons

Feasibility Study Facility Locations & Layout

Collection & Treatment System(s) Advanced Treatment System(s) Cooling Water Distribution & Storage Geothermal District(s)

Scotts Tunnel & Colbert Breach Collection Systems & Pipelines

Scotts Tunnel & Colbert Breach AMD & Advanced Treatment Facilities

Scotts Tunnel & Colbert Breach Cooling Water Pumping, Pipeline & Storage

Scotts Tunnel & Colbert Breach Geothermal Cooling Water District(s)

Feasibility Study Financial Evaluation

Estimated Overall Project Capital Costs

Item	Description	Size	Quantity	Total		
Scotts Tunnel & Colbert Breach AMD						
1	Collection & Conveyance	36 in./12 in.	2	\$640,000		
2	AIS Treatment System	13.5 MGD	1	\$6,170,000		
3	Advanced Treatment System	1-5 MGD	1	\$2,990,000		
4	Cooling Water Distribution	0.75 MGD	1	\$1,700,000		
5	Open Loop Geothermal System	1.0-2.0 MGD	1	\$2,420,000		
6	Beneficial Solids Reuse 2.3 tons/day 1			\$960,000		
	\$14,880,000					
Excelsior & Maysville AMD						
1	Collection & Conveyance	36 in./12 in.	2	\$1,850,000		
2	AIS Treatment System	11.9 MGD	1	\$5,780,000		
3	Advanced Treatment System	1 MGD	1	\$1,940,000		
4	Open Loop Geothermal System	1.0	1	\$1,160,000		
5	Beneficial Solids Reuse	1.9 tons/day	1	\$960,000		
	\$9,890,000					
Total	\$24,770,000					

Estimated Overall Project Operating Costs

Item	Description	Daily	Annual			
Scotts Tunnel & Colbert Breach AMD Project						
1	Collection & Conveyance	NA	NA			
2	AIS Treatment System	\$1,340	\$489,000			
3	Advanced Treatment System (3 MGD)	\$540	\$197,500			
4	Cooling Water Distribution	\$230	\$85,000			
5	Open Loop Geothermal System	\$120	\$45,000			
6	Beneficial Solids Reuse	\$180	\$65,300			
	Project Sub-Total	\$2,410	\$882,000			
	Excelsior & Maysville AMD Project					
1	Collection & Conveyance	NA	NA			
2	AIS Treatment System	\$1,205	\$440,000			
3	Advanced Treatment System (1 MGD)	\$285	\$104,000			
4	Open Loop Geothermal System	\$85	\$31,000			
5	Beneficial Solids Reuse	\$180	\$65,300			
	Project Sub-Total	\$1,755	\$640,000			
Total	Feasibility Study Operating Cost	\$4,165	\$1,522,000			

Comparison of Market Value Vs. Beneficial Reuse Water Cost

Summary of Aqua PA Consumptive Charges for Industrial Water				
Volume Use Gallons Per Month	Volume Use Gallons Per Day	Charge \$/1,000 gallons		
Less than 10,000	Less than 333	\$7.615		
10,000 to 33,300	333 to 1,110	\$6.690		
33,300 to 333,300	1,100 to 11,110	\$5.550		
333,300 to 3,333,300	11,110 to 111,110	\$5.081		
3,333,300 to 10,000,000	111,110 to 333,333	\$4.590		
Greater than 10,000,000	Greater than 333,333	\$3.670		

Summary of Predicted Cost To Produce Beneficial Reuse Water Cost includes 100% AMD Flow Treated by AIS						
Capital Investment	Grant Funding	Beneficial Reuse Flow Cost of Water (\$/1000 gals)				
		1.0 MGD	2.0 MGD	3.0 MGD	5.0 MGD	
\$0	100%	4.35 (3.40)	2.25 (1.95)	1.55 (1.20)	0.97 (0.78)	
\$6 million	25%	5.55 (4.55)	2.85 (2.35)	1.95 (1.60)	1.20 (1.00)	
\$12 million	50%	6.75 (5.80)	3.45 (2.95)	2.35 (2.00)	1.45 (1.25)	
\$24 million	0%	9.15 (8.20)	4.65 (4.15)	3.15 (2.80)	1.95 (1.75)	

Value in () represents costs with beneficial reuse of solids at \$225 per ton

Financial Evaluation Summary

- The projects in the Feasibility Study requires a substantial capital investment and annual operating cost.
- Analysis indicates it is possible treat all the AMD flow in the Study Area and produce a limited volume of beneficial reuse water at below the market-value of potable water.
- > The analysis also indicates public funding will be required to produce a market-value water.
 - Public funding required is 25 to 100% of Capital Costs.
 - Funding depends on volume of Beneficial Reuse Water Demand.
- Based on a comprehensive analysis, The Scotts Tunnel & Colbert Breach Project should be pursued.
 - Current Cooling Water Demand (~ 1 MGD)
 - Potential Geothermal Use at Existing Facilities (1-2 MGD)
 - Potential Increased Geothermal and Industrial Water Demand (2-5 MGD)

The Feasibility Study Indicates:

- 1. Long Term Sustainable Treatment of the AMD in the Study Area using Active Treatment in Combination with Beneficial Water (and Solids) Reuse is Possible.
- 2. Project Success would have Substantial Implications Improving Local Social, Economic, & Environmental Conditions.

Where Do We Go From Here?

- 1. Public Participation & Involvement
- 2. Develop Project Public & Private Partners
 - a. Project Management
 - b. Treatment System Operation
 - c. Project Funding & Development
- 3. Market the Project to Local, State & Federal Agencies & Private Companies
- 4. Obtain Funding For Design, Construction & Operation of the Project
- 5. ?????